13 research outputs found

    Assessing caffeine exposure in pregnant women.

    Get PDF
    Studies on the effects of caffeine on health, while numerous, have produced inconsistent results. One of the most uncertain and controversial effects is on pregnancy outcome. Studies have produced conflicting results due to a number of methodological variations. The major challenge is the accurate assessment of caffeine intake. The aim of the present study was to explore different methods of assessing caffeine exposure in pregnant women. Twenty-four healthy pregnant women from the UK city of Leeds completed both a detailed questionnaire, the caffeine assessment tool (CAT) designed specifically to assess caffeine intake and a prospective 3 d food and drink diary. The women also provided nine saliva samples over two consecutive days for estimation of caffeine and a metabolite (paraxanthine). Caffeine intakes from the CAT and diary showed adequate agreement (intra-class correlation coefficient of 0.5). For saliva caffeine and paraxanthine measures, the between-sample variation (within the same woman) was greater than between-woman and between-day variation. However, there was still adequate agreement between these measures and the CAT. The CAT is a valuable tool that is now being used in a large prospective study investigating caffeine's role in pregnancy outcome

    On the Mechanism of Electron Beam Radiation-Induced Modification of Poly(lactic acid) for Applications in Biodegradable Food Packaging

    No full text
    Poly(lactic acid) (PLA) is a biodegradable polymer used for food packaging. The effects of electron beam radiation on the chemical and physical properties of amorphous PLA were studied. In this study, amorphous, racemic PLA was irradiated at doses of 5, 10, 15, and 20 kGy in the absence of oxygen. Utilizing electron paramagnetic resonance spectrometry, it was found that alkoxyl radicals are initially formed as a result of C-O-C bond scissions on the backbone of the PLA. The dominant radiation mechanism was determined to be H-abstraction by alkoxyl radicals to form C-centered radicals. The C-centered radicals undergo a subsequent peroxidation reaction with oxygen. The gel permeation chromatography (GPC) results indicate reduction in polymer molecular mass. The differential scanning calorimetry and X-ray diffraction results showed a subtle increase in crystallinity of the irradiated PLA. Water vapor transmission rates were unaffected by irradiation. In conclusion, these results support that irradiated PLA is a suitable material for applications in irradiation of food packaging, including food sterilization and biodegradation.https://doi.org/10.3390/app1204181

    Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry

    No full text
    Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) \u3c 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p \u3c 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations

    Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices

    No full text
    Abstract Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10−72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10−4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10−5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids

    A saturated map of common genetic variants associated with human height

    No full text

    A saturated map of common genetic variants associated with human height

    No full text
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries
    corecore